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ABSTRACT: TCAMs are commonly implemented as standalone devices or as an intellectual property 

block that is integrated on networking application-specific integrated circuits. However, the flexibility of 

FPGAs makes them attractive for SDN implementations, and most vendors provide development kits for 

SDN. Those need to support TCAM functionality and, therefore, there is a need to emulate TCAMs using 

the logic blocks available inthe FPGA. In recent years, a number of schemes to emulate TCAMs on 

processors  have been proposed. Some of them take advantage of the large number of memory blocks 

available inside modern processors to use them to implement TCAMs. A problem when using memories is 

that they can be affected by soft errors that corrupt the stored bits. The memories can be protected with a 

parity check to detect errors or with an error correction code to correct them, but this requires additional 

memory bits per word. In this brief, the protection of the memories used to emulate TCAMs is considered. 

KEYWORDS: Multiple Cell Upsets, Content addressable Memory, Ternary, Soft errors, Erroro checking, 

Parity. 

INTRODUCTION: Multiple Cell Upsets 

(MCUs) are like a single event that induces 

several bits in an integrated circuit to fail at the 

same time. It affects mostly Static Random 

Access Memory (SRAM). The MCUs occur due 

to radiation particle striking the memory and the 

neutrons penetrate into the SRAM memory. Due 

to this, electron hole pair generation will take 

place resulting in an accumulation of the charges 

in the memory. When the charges exceed the 

critical charge limit, then it can flip the logical 

state in the memory [1]. It is stated that neutron 

irradiation reduced the single event latch-up and 

the sensitivity of CMOS SRAM [2] Soft errors 

are a major concern for modern electronic 

circuits and,in particular, for memories [1]. A soft 

error can change the contents of the bits stored in 

a memory and cause a system failure. The soft 

error rate in terrestrial applications is low. For 

example, in [2], it was estimated that for a 65-nm 

static random access memory (SRAM) memory, 

the bit error rate was on the order of 10−9 errors 

pe  year. That would translate to only one error 

per year for a system  that uses 1 Gbit of 

memory. However, even such a low error rate is a 

big concern for critical applications such as 

communication networks on which the network 

elements such as routers have to provide a high 

level of reliability and availability. Therefore, soft 

errors are an important issue when designing 

routers or other network elements, and 

manufacturers take them into account and 

incorporate error mitigation techniques [3], [4]. 

For example, error detection and correction 

codes are commonly used to protect memories 

[5]. A parity bit can be added to each memory 

word to detect single-bit errors, or a single-error 

correction (SEC) code can be used to correct 
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them. These codes require additional bits per 

word thus, increasing the memory size and also 

some logic to write and read from the memory. 

For example, for a 16-bit word, an SEC code 

requires 5 bits while a parity check requires only 

one. Ternary content addressable memories 

(TCAMs) are a special  kind of content 

addressable memories [6] that support do not 

care bits (commonly denoted as “x”) that match 

both a zero and a one.TCAMs are widely used in 

networking applications to perform packet 

classification [7]. They can be implemented as 

standalone devices or integrated as part of 

networking application specific integrated circuits 

(ASICs) [8]. The TCAM memory cells different 

from normal SRAM cells, in which they check 

the incoming value for a match to the stored 

value that can be for each bit 0, 1, or x. The 

results from all the words are then sent to a 

priority encoder that returns the match with the 

highest priority. This comparison and selection 

logic introduces a significant overhead in terms of 

area and powerconsumption relative to that of an 

SRAM memory. 

LITERATURE SURVEY: In [9], a technique 

was proposed to reduce power consumption of 

matchlines in content addressable memories 

(CAMs) called selective precharge technique. In 

selective precharge technique, the matchline is 

divided into two segments. Firstly, the searching 

operation is performed in the first segment in 

which first few bits of a word i.e. a small subset of 

CAM cells are searched. If there is a matching of 

data in the first segment only then searching of 

remaining bits in the second segment will be 

activated. In [8], an architecture was proposed 

having low-power, low-cost, and high-reliability 

features called as fully parallel precomputation-

based content addressable memory (PBCAM). 

This design is based on a precomputation skill 

that saves power consumption of the CAM by 

reducing number of comparisons in the second 

part of the comparison process. In this design, 

one’s count approach is used for 

precomputation. Hence, a one‟s count 

parameter extractor was designed using a chain of 

full adders but it increases delay as data bit length 

increases. In [7], a technique was proposed to 

reduce power consumption of matchlines in 

content addressable memories (CAMs) called 

pipelining technique. In this technique, the 

search operation is pipelined by breaking the 

match-lines into many segments. Since most 

stored words do not match in their first segments, 

the search operation is aborted for subsequent 

segments. Hence, power gets reduced. The 

power savings of the pipelined MLs is a result of 

activating only a small portion of the matchline 

segments. In [5], a new approach for PBCAM 

known as a Block-XOR approach was proposed 

to improve the efficiency of low power 

precomputation-based CAM (PBCAM) 

proposed in [8]. In this paper, a Block-XOR 

parameter extractor for low power PB-CAM was 

proposed. This paper presented theoretical and 

practical proofs to verify that this proposed 

Block-XOR PB-CAM can effectively achieve 

greater power reduction by reducing the number 

of comparison operations in the second part of 

the comparison process. This implies that this 

approach is more flexible and adaptive for 

general designs. In addition, the proposed Block-

XOR PB-CAM can compute parameter bits in 

parallel with only three XOR gate delays for any 

input bit length (constant delay of search 

operation). Matrix Code (MC) [15] combined 

hamming and parity code to protect SRAM 

memory. It performed better than Hamming.  

CONTENT-ADDRESSABLE MEMORY: 

Content-addressable memory (CAM) is silicon 

chip architecture that is purpose-built for 

extremely fast but very specific type of memory 

lookups. Lookups using a CAM is conceptually 

similar to associative array logic in data structures 

but the output are highly simplified.  When  key 

is passed to a CAM sub-system it returns the 

associated  value to that key. As a result a “key -> 

value” pair is created that can be referenced 
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further as an object. The most important feature 

is that a lookup of an entry in a CAM can be 

performed in a single clock cycle in the silicon. 

Compare this with a RAM module that requires 

multiple clock cycles to make a single memory 

fetch. 

 
 

Figure 1: Conceptual View Diagram of CAM 

The conceptual view diagram of CAM is shown 

in Figure1. It shows that CAM contains m data 

words in which data is stored. The search word is 

the n bit input data which is broadcasted onto the 

search lines to compare it with the table of stored 

words simultaneously [6]. There is a matchline 

associated with each stored word which indicates 

whether the search data is matched with the 

stored data or not. If the search data is matched 

with stored data, it is a match case otherwise 

mismatch case. These matchlines are fed to an 

encoder. This encoder generates the binary 

location corresponding to matchline which 

indicates the match case. If there are more than 

one matchline that indicates the match case then 

the priority encoder can be used to generate the 

matched memory location. The priority encoder 

gives the matching address location 

corresponding to highest priority matchline. 

ERROR DETECTION AND CORRECTION 

IN SRAM-BASED TCAMS The scheme 

proposed to protect the memories used to 

emulate theTCAM uses a per word parity bit to 

detect single-bit errors. Then, once an error is 

detected, the intrinsic redundancy of the memory 

contents is used to try to correct the error. The 

implementation of the parity protection is shown 

in Fig. 2 where p corresponds to the parity bit. It 

can be seen that in addition to the match signal, 

an error signal is generated when there is a 

mismatch between the  

 
 

Fig. 2. Examples of single-bit errors on a parity 

protected TCAM with 6-bit  keys and four rules 

emulated using two SRAMs. stored parity and  he 

recomputed one. This is a standard parity 

protection that can detect all single-bit errors [5]. 

Detecting the error on every access is crucial to 

avoid incorrect results on search operations. Let 

us now assume that a single-bit error has 

occurred on a given word and that it is detected 

with the parity check. Upon error detection, we 

can check the contents of the memory to try to 

correct the error. A first attempt could be to read 
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all the words in the memory and count the 

number of positions that have a one for each 

rule. Let us denote that number as the weight of 

the rule in that memory. For example, in the 

leftmost memory of Fig. 2, r1 would have a 

weight of 1, r2 of 2, and r3 of 4. This can help us 

identify the erroneous bit as the weight for an 

error-free rule can only be 0, 1, 2, 4, and 8 for an 

8-position memory. To further discuss the error 

correction process,let us focus on the examples 

of single-bit errors shown in Fig. 3. For example, 

e3 affects r3 on the leftmost memory by changing 

its weight from 4 to 3. Since 3 is not a valid value, 

after detecting the parity error, we would identify 

that the erroneous bit is that in r3 and we would 

correct it. This approach would be effective for 

rules that have a weight larger than two, i.e., they 

have two or more “x” bits on the key bits that 

correspond to that memory. On the other hand, 

for rules with a lower weight, checking the weight 

alone may not be enough. Let us now consider a 

rule with weight two. Then, an error that changes 

a zero to a one will change the weight to three 

and the error will be corrected. However, when a 

one is changed to  a zero (as in e2), then the new 

weight would be one that is a valid value and the 

error cannot be corrected. This, however, is less 

likely to occur as only 2 positions have a one. If 

we now consider a weight one rule, an error that 

sets another bit to one would produce a weight of 

two that is also valid. However, not all weight two 

combinations are possible. This is clearly seen 

when looking at e4. In that case, the values of r2 

that are one would correspond to key values 000 

and 011 and those do not correspond to a valid 

rule. In general, only positions that correspond to 

key values that are at distance one from the 

original value will not be detected. On the other 

hand, an error that sets to zero the position that 

was one in a weight one rule can be corrected by 

checking if the rule has zero weight on the other 

memories. If that is the case, then the rule is 

disabled and the bit is not in error. Otherwise, 

the rule had a weight of one and the error is 

corrected. Finally, an error in a rule that had a 

weight of zero can also be corrected by checking 

the weight of the rule on the other memories. 

The previous discussion shows that by using the 

intrinsic redundancy of the memory contents, 

many single-bit error patterns could be corrected. 

Let us now quantify the fraction of single-bit error 

patterns that can be corrected for each weight in a 

memory of 2b positions. 1) Weight zero: all 

patterns can be corrected. 2) Weight one: all 

except those that set a bit to one for a position 

with an address at distance one, this corresponds 

to 1 − b/2b. 3) Weight two: all patterns can be 

corrected except the two tha tset a position with a 

one to a zero, this corresponds to 1−2/2b .4) 

Weight four or larger: all patterns can be 

corrected. It can be seen that most of the error 

patterns are corrected. This is better seen in 

Table I that illustrates the percentage of 

correctable patterns for columns of different 

weights. The only cases where not all errors can 

be corrected are weight one and two, and for 

those  the percentage will approach 100% when b 

is large. The percentage of errors that can be 

corrected for different values of b is shown in 

Table II. It can be seen that even for small 

memories (b = 5 corresponds to 32 positions), 

the error coverage is close to 90% in the worst 

case. For larger memories, the coverage is over 

95% and gets close to 100%. For example, for b = 

9, the coverage is over 98% in the worst case. 

This shows the effectiveness of the proposed 

scheme in correcting single bit errors when the 

memories are protected with a parity bit. The 

pseudocode of the proposed correction algorithm 

is shown  in Algorithm 1. The process starts 

when a parity error is detected when reading a 

word from a block memory. To correct the error, 

we need to identify the bit (or column) affected 

by the error. To do so, in the first phase, all the 

positions in the block are read and the column 

weights are computed by adding the ones seen in 

each column. Then, the second phase checks 

different cases for the column weight to try to 
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identify the erroneous column. If that occurs, the 

bitof that column in the word that had the parity 

error is the erroneous bit and it is corrected. In 

the algorithm, this second phase starts by 

checking if there is a column that has an illegal 

weight. As discussed before, the only valid 

column weights are: 0, 1, 2i for i = 1, 2,…, b. 

Therefore, if a column has, for example, weight 

three, then it is the erroneous one. If the 

erroneous bit is found, it is corrected and the 

process ends. Otherwise, we proceed to check 

columns that have zero weight. Those should 

correspond to TCAM entries that are not used 

and should have zero weight on all the other 

memory blocks. Therefore, we check if they have 

also zero weight on another block. If not, the 

error has been found and it is corrected. If all the 

columns with zero weight have also weight zero 

on another block, we proceed 

 
Fig. 3 SEC protected TCAM with 6-bit keys and 

four rules emulated using two SRAMs. 

 
 

to check columns of weight one. For that, we 

check if they have zero weight on another block. 

If that is the case, that column is the one that 

suffered the error and we correct it. If not, we 

proceed to the last step in which columns of 

weight two are checked. To do that, the two 

addresses of the two positions that contain a one 

are XORed. If the result has more than a one, 

the column has suffered an error and we correct 

it. If that does not happen, then we have suffered 

one of the few errors that are not correctable. 
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DRAWBACKS: 

Major drawback lies in hardware implementation. 

Because of more density requirement for error 

detection and correction , need more hard ware 

components for designing. 

Some more complexity is presented in software 

implementation. 

 

PROPOSED TECHNIQUE: 

 
Fig: 4 bit majority 

 

In Boolean logic, the majority function (also 

called the median operator) is 

a function from n inputs to one output. The value 

of the operation is false when n/2 or more 

arguments are false, and true otherwise. 

Alternatively, representing true values as 1 and 

false values as 0. Majority Circuit 

Implementation: Here we present a compact 

implementation for the majority gate using 

Sorting Networks [13]. The majority gate has 

application in many other error-correcting codes, 

and this compact implementation can improve 

many other applications. Majority function of 

binary digits is simply the median of the digits. 

A majority gate is a logical gate used in circuit 

complexity and other applications of Boolean 

circuits. A majority gate returns true if and only if 

more than 50% of its inputs are true. 

For instance, in a full adder, the carry output is 

found by applying a majority function to the three 

inputs, although frequently this part of the adder 

is broken down into several simpler logical gates. 

Many systems have triple modular redundancy; 

they use the majority function for majority logic 

decoding to implement error correction. 

A major result in circuit complexity asserts that 

the majority function cannot be computed 

by AC0 circuits of sub exponential size. 

 

RESULT: 

 
  

CONCLUSION: To prevent MCUs from 

causing data corruption, more complex error 

correction codes (ECCs) are widely used to 

protect memory, but the main problem is that 

they would require higher delay overhead. 

Recently, matrix codes (MCs) based on 

Hamming codes have been proposed for 

memory protection. In this implemented project, 

novel per-word DMC was proposed to assure the 

reliability of memory. The protection code 

utilized decimal algorithm to detect errors, so that 

more errors were detected and corrected. The 

obtained results showed that the implemented 

scheme has a superior protection level against 

large MCUs in memory. Besides, the 
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implemented decimal error detection technique 

is an attractive opinion to detect MCUs in CAM 

because it can be combined with BICS to provide 

an adequate level of immunity. 
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