
Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

RELIABLE AND LOW DENSITY BASED ERRRO CORRECTION

IN SRAM CELLS

1

ADAPA PAVITHRA LAKSHMI UMA SAI,
2

S SAMBASIVA RAO DANNINA
1

M.Tech Student, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram,AP
2

Associate Professor, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram,AP

ABSTRACT: TCAMs are commonly implemented as standalone devices or as an intellectual property

block that is integrated on networking application-specific integrated circuits. However, the flexibility of

FPGAs makes them attractive for SDN implementations, and most vendors provide development kits for

SDN. Those need to support TCAM functionality and, therefore, there is a need to emulate TCAMs using

the logic blocks available inthe FPGA. In recent years, a number of schemes to emulate TCAMs on

processors have been proposed. Some of them take advantage of the large number of memory blocks

available inside modern processors to use them to implement TCAMs. A problem when using memories is

that they can be affected by soft errors that corrupt the stored bits. The memories can be protected with a

parity check to detect errors or with an error correction code to correct them, but this requires additional

memory bits per word. In this brief, the protection of the memories used to emulate TCAMs is considered.

KEYWORDS: Multiple Cell Upsets, Content addressable Memory, Ternary, Soft errors, Erroro checking,

Parity.

INTRODUCTION: Multiple Cell Upsets

(MCUs) are like a single event that induces

several bits in an integrated circuit to fail at the

same time. It affects mostly Static Random

Access Memory (SRAM). The MCUs occur due

to radiation particle striking the memory and the

neutrons penetrate into the SRAM memory. Due

to this, electron hole pair generation will take

place resulting in an accumulation of the charges

in the memory. When the charges exceed the

critical charge limit, then it can flip the logical

state in the memory [1]. It is stated that neutron

irradiation reduced the single event latch-up and

the sensitivity of CMOS SRAM [2] Soft errors

are a major concern for modern electronic

circuits and,in particular, for memories [1]. A soft

error can change the contents of the bits stored in

a memory and cause a system failure. The soft

error rate in terrestrial applications is low. For

example, in [2], it was estimated that for a 65-nm

static random access memory (SRAM) memory,

the bit error rate was on the order of 10−9 errors

pe year. That would translate to only one error

per year for a system that uses 1 Gbit of

memory. However, even such a low error rate is a

big concern for critical applications such as

communication networks on which the network

elements such as routers have to provide a high

level of reliability and availability. Therefore, soft

errors are an important issue when designing

routers or other network elements, and

manufacturers take them into account and

incorporate error mitigation techniques [3], [4].

For example, error detection and correction

codes are commonly used to protect memories

[5]. A parity bit can be added to each memory

word to detect single-bit errors, or a single-error

correction (SEC) code can be used to correct

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

them. These codes require additional bits per

word thus, increasing the memory size and also

some logic to write and read from the memory.

For example, for a 16-bit word, an SEC code

requires 5 bits while a parity check requires only

one. Ternary content addressable memories

(TCAMs) are a special kind of content

addressable memories [6] that support do not

care bits (commonly denoted as “x”) that match

both a zero and a one.TCAMs are widely used in

networking applications to perform packet

classification [7]. They can be implemented as

standalone devices or integrated as part of

networking application specific integrated circuits

(ASICs) [8]. The TCAM memory cells different

from normal SRAM cells, in which they check

the incoming value for a match to the stored

value that can be for each bit 0, 1, or x. The

results from all the words are then sent to a

priority encoder that returns the match with the

highest priority. This comparison and selection

logic introduces a significant overhead in terms of

area and powerconsumption relative to that of an

SRAM memory.

LITERATURE SURVEY: In [9], a technique

was proposed to reduce power consumption of

matchlines in content addressable memories

(CAMs) called selective precharge technique. In

selective precharge technique, the matchline is

divided into two segments. Firstly, the searching

operation is performed in the first segment in

which first few bits of a word i.e. a small subset of

CAM cells are searched. If there is a matching of

data in the first segment only then searching of

remaining bits in the second segment will be

activated. In [8], an architecture was proposed

having low-power, low-cost, and high-reliability

features called as fully parallel precomputation-

based content addressable memory (PBCAM).

This design is based on a precomputation skill

that saves power consumption of the CAM by

reducing number of comparisons in the second

part of the comparison process. In this design,

one’s count approach is used for

precomputation. Hence, a one‟s count

parameter extractor was designed using a chain of

full adders but it increases delay as data bit length

increases. In [7], a technique was proposed to

reduce power consumption of matchlines in

content addressable memories (CAMs) called

pipelining technique. In this technique, the

search operation is pipelined by breaking the

match-lines into many segments. Since most

stored words do not match in their first segments,

the search operation is aborted for subsequent

segments. Hence, power gets reduced. The

power savings of the pipelined MLs is a result of

activating only a small portion of the matchline

segments. In [5], a new approach for PBCAM

known as a Block-XOR approach was proposed

to improve the efficiency of low power

precomputation-based CAM (PBCAM)

proposed in [8]. In this paper, a Block-XOR

parameter extractor for low power PB-CAM was

proposed. This paper presented theoretical and

practical proofs to verify that this proposed

Block-XOR PB-CAM can effectively achieve

greater power reduction by reducing the number

of comparison operations in the second part of

the comparison process. This implies that this

approach is more flexible and adaptive for

general designs. In addition, the proposed Block-

XOR PB-CAM can compute parameter bits in

parallel with only three XOR gate delays for any

input bit length (constant delay of search

operation). Matrix Code (MC) [15] combined

hamming and parity code to protect SRAM

memory. It performed better than Hamming.

CONTENT-ADDRESSABLE MEMORY:

Content-addressable memory (CAM) is silicon

chip architecture that is purpose-built for

extremely fast but very specific type of memory

lookups. Lookups using a CAM is conceptually

similar to associative array logic in data structures

but the output are highly simplified. When key

is passed to a CAM sub-system it returns the

associated value to that key. As a result a “key ->

value” pair is created that can be referenced

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

further as an object. The most important feature

is that a lookup of an entry in a CAM can be

performed in a single clock cycle in the silicon.

Compare this with a RAM module that requires

multiple clock cycles to make a single memory

fetch.

Figure 1: Conceptual View Diagram of CAM

The conceptual view diagram of CAM is shown

in Figure1. It shows that CAM contains m data

words in which data is stored. The search word is

the n bit input data which is broadcasted onto the

search lines to compare it with the table of stored

words simultaneously [6]. There is a matchline

associated with each stored word which indicates

whether the search data is matched with the

stored data or not. If the search data is matched

with stored data, it is a match case otherwise

mismatch case. These matchlines are fed to an

encoder. This encoder generates the binary

location corresponding to matchline which

indicates the match case. If there are more than

one matchline that indicates the match case then

the priority encoder can be used to generate the

matched memory location. The priority encoder

gives the matching address location

corresponding to highest priority matchline.

ERROR DETECTION AND CORRECTION

IN SRAM-BASED TCAMS The scheme

proposed to protect the memories used to

emulate theTCAM uses a per word parity bit to

detect single-bit errors. Then, once an error is

detected, the intrinsic redundancy of the memory

contents is used to try to correct the error. The

implementation of the parity protection is shown

in Fig. 2 where p corresponds to the parity bit. It

can be seen that in addition to the match signal,

an error signal is generated when there is a

mismatch between the

Fig. 2. Examples of single-bit errors on a parity

protected TCAM with 6-bit keys and four rules

emulated using two SRAMs. stored parity and he

recomputed one. This is a standard parity

protection that can detect all single-bit errors [5].

Detecting the error on every access is crucial to

avoid incorrect results on search operations. Let

us now assume that a single-bit error has

occurred on a given word and that it is detected

with the parity check. Upon error detection, we

can check the contents of the memory to try to

correct the error. A first attempt could be to read

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

all the words in the memory and count the

number of positions that have a one for each

rule. Let us denote that number as the weight of

the rule in that memory. For example, in the

leftmost memory of Fig. 2, r1 would have a

weight of 1, r2 of 2, and r3 of 4. This can help us

identify the erroneous bit as the weight for an

error-free rule can only be 0, 1, 2, 4, and 8 for an

8-position memory. To further discuss the error

correction process,let us focus on the examples

of single-bit errors shown in Fig. 3. For example,

e3 affects r3 on the leftmost memory by changing

its weight from 4 to 3. Since 3 is not a valid value,

after detecting the parity error, we would identify

that the erroneous bit is that in r3 and we would

correct it. This approach would be effective for

rules that have a weight larger than two, i.e., they

have two or more “x” bits on the key bits that

correspond to that memory. On the other hand,

for rules with a lower weight, checking the weight

alone may not be enough. Let us now consider a

rule with weight two. Then, an error that changes

a zero to a one will change the weight to three

and the error will be corrected. However, when a

one is changed to a zero (as in e2), then the new

weight would be one that is a valid value and the

error cannot be corrected. This, however, is less

likely to occur as only 2 positions have a one. If

we now consider a weight one rule, an error that

sets another bit to one would produce a weight of

two that is also valid. However, not all weight two

combinations are possible. This is clearly seen

when looking at e4. In that case, the values of r2

that are one would correspond to key values 000

and 011 and those do not correspond to a valid

rule. In general, only positions that correspond to

key values that are at distance one from the

original value will not be detected. On the other

hand, an error that sets to zero the position that

was one in a weight one rule can be corrected by

checking if the rule has zero weight on the other

memories. If that is the case, then the rule is

disabled and the bit is not in error. Otherwise,

the rule had a weight of one and the error is

corrected. Finally, an error in a rule that had a

weight of zero can also be corrected by checking

the weight of the rule on the other memories.

The previous discussion shows that by using the

intrinsic redundancy of the memory contents,

many single-bit error patterns could be corrected.

Let us now quantify the fraction of single-bit error

patterns that can be corrected for each weight in a

memory of 2b positions. 1) Weight zero: all

patterns can be corrected. 2) Weight one: all

except those that set a bit to one for a position

with an address at distance one, this corresponds

to 1 − b/2b. 3) Weight two: all patterns can be

corrected except the two tha tset a position with a

one to a zero, this corresponds to 1−2/2b .4)

Weight four or larger: all patterns can be

corrected. It can be seen that most of the error

patterns are corrected. This is better seen in

Table I that illustrates the percentage of

correctable patterns for columns of different

weights. The only cases where not all errors can

be corrected are weight one and two, and for

those the percentage will approach 100% when b

is large. The percentage of errors that can be

corrected for different values of b is shown in

Table II. It can be seen that even for small

memories (b = 5 corresponds to 32 positions),

the error coverage is close to 90% in the worst

case. For larger memories, the coverage is over

95% and gets close to 100%. For example, for b =

9, the coverage is over 98% in the worst case.

This shows the effectiveness of the proposed

scheme in correcting single bit errors when the

memories are protected with a parity bit. The

pseudocode of the proposed correction algorithm

is shown in Algorithm 1. The process starts

when a parity error is detected when reading a

word from a block memory. To correct the error,

we need to identify the bit (or column) affected

by the error. To do so, in the first phase, all the

positions in the block are read and the column

weights are computed by adding the ones seen in

each column. Then, the second phase checks

different cases for the column weight to try to

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

identify the erroneous column. If that occurs, the

bitof that column in the word that had the parity

error is the erroneous bit and it is corrected. In

the algorithm, this second phase starts by

checking if there is a column that has an illegal

weight. As discussed before, the only valid

column weights are: 0, 1, 2i for i = 1, 2,…, b.

Therefore, if a column has, for example, weight

three, then it is the erroneous one. If the

erroneous bit is found, it is corrected and the

process ends. Otherwise, we proceed to check

columns that have zero weight. Those should

correspond to TCAM entries that are not used

and should have zero weight on all the other

memory blocks. Therefore, we check if they have

also zero weight on another block. If not, the

error has been found and it is corrected. If all the

columns with zero weight have also weight zero

on another block, we proceed

Fig. 3 SEC protected TCAM with 6-bit keys and

four rules emulated using two SRAMs.

to check columns of weight one. For that, we

check if they have zero weight on another block.

If that is the case, that column is the one that

suffered the error and we correct it. If not, we

proceed to the last step in which columns of

weight two are checked. To do that, the two

addresses of the two positions that contain a one

are XORed. If the result has more than a one,

the column has suffered an error and we correct

it. If that does not happen, then we have suffered

one of the few errors that are not correctable.

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

DRAWBACKS:

Major drawback lies in hardware implementation.

Because of more density requirement for error

detection and correction , need more hard ware

components for designing.

Some more complexity is presented in software

implementation.

PROPOSED TECHNIQUE:

Fig: 4 bit majority

In Boolean logic, the majority function (also

called the median operator) is

a function from n inputs to one output. The value

of the operation is false when n/2 or more

arguments are false, and true otherwise.

Alternatively, representing true values as 1 and

false values as 0. Majority Circuit

Implementation: Here we present a compact

implementation for the majority gate using

Sorting Networks [13]. The majority gate has

application in many other error-correcting codes,

and this compact implementation can improve

many other applications. Majority function of

binary digits is simply the median of the digits.

A majority gate is a logical gate used in circuit

complexity and other applications of Boolean

circuits. A majority gate returns true if and only if

more than 50% of its inputs are true.

For instance, in a full adder, the carry output is

found by applying a majority function to the three

inputs, although frequently this part of the adder

is broken down into several simpler logical gates.

Many systems have triple modular redundancy;

they use the majority function for majority logic

decoding to implement error correction.

A major result in circuit complexity asserts that

the majority function cannot be computed

by AC0 circuits of sub exponential size.

RESULT:

CONCLUSION: To prevent MCUs from

causing data corruption, more complex error

correction codes (ECCs) are widely used to

protect memory, but the main problem is that

they would require higher delay overhead.

Recently, matrix codes (MCs) based on

Hamming codes have been proposed for

memory protection. In this implemented project,

novel per-word DMC was proposed to assure the

reliability of memory. The protection code

utilized decimal algorithm to detect errors, so that

more errors were detected and corrected. The

obtained results showed that the implemented

scheme has a superior protection level against

large MCUs in memory. Besides, the

Copyright @ 2020 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

implemented decimal error detection technique

is an attractive opinion to detect MCUs in CAM

because it can be combined with BICS to provide

an adequate level of immunity.

REFERENCES:

 [1] Dejan Georgiev, “Low Power Concept for

Content Addressable Memory (CAM) Chip

Design,” International Journal of Advanced

Research in Electrical, Electronics and

Instrumentation Engineering, Vol.2, Issue 7, July

2013.

[2] S. Jeeva, S. Bharathi and Dr. C. N.

Marimuthu, “Low Power Architecture of Banked

Pre-Computation Based Content Addressable

Memory”, International Conference on

Computing, Communication and Information

Technology (ICCCIT 2012), p.p. 156-160, June

2012.

 [3] Rafeekha M. J, V. Lakshmi Narasimhan,

“Banked Approach of Low Power Design of Pre-

Computation Based Content Addressable

Memory”, International Journal of Modern

Engineering Research (IJMER), Vol. 2, Issue 3,

p.p. 1424-1429, May-June 2012.

[4] Subha. M, “The Efficient Architecture

Methods for Low Power Content Addressable

Memory- Survey”, Recent Advances in

Networking, VLSI and Signal Processing, p.p.

141-146.

[5] S. J. Ruan, C.Y. Wu, J. Y. Hsieh, “Low power

design of pre-computation based content-

addressable memory,” IEEE Transactions Very

Large Scale Integration (VLSI) Systems, Vol. 16,

No. 3, p.p. 331-335, March 2008.

[6] K. Pagiamtzis and A. Sheikholeslami,

"ContentAddressable Memory (CAM) Circuits

and Architectures: A Tutorial and Survey," IEEE

Journal of Solid-State Circuits, Vol. 41, p.p. 712-

727, March 2006.

 [7] K. Pagiamtzis and A. Sheikholeslami, “A low-

power content-addressable memory (CAM) using

pipelined hierarchical search scheme,” IEEE J.

Solid-State Circuits, Vol. 39, No. 9, p.p. 1512–

1519, Sep. 2004.

[8] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-

power precomputation-based fully parallel

content-addressable memory,” IEEE J. Solid-

State Circuits, Vol. 38, No. 4, p.p. 654–662, Apr.

2003.

[9] C. A. Zukowski and S.-Y. Wang, “Use of

selective precharge for low power content-

addressable memories,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), Vol. 3, p.p. 1788–

1791, 1997.

