ENGINEERING IN ADVANCED
RESEARCH SCIENCE AND
TECHNOLOGY

Wol.02, Issue.01
July -2020
Pages:-154-163

www.ijearst.co.in /

RELIAB_LE AND LOW DENSITY BASED ERRRO CORRECTION
IN SRAM CELLS

'ADAPA PAVITHRA LAKSHMI UMA SAI, °‘S SAMBASIVA RAO DANNINA
‘M.Tech Student, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram,AP
*‘Associate Professor, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram,AP

ABSTRACT: TCAMs are commonly implemented as standalone devices or as an intellectual property
block that 1s integrated on networking application-specific mtegrated circuits. However, the flexibility of
FPGAs makes them attractive for SDN mmplementations, and most vendors provide development kits for
SDN. Those need to support TCAM functionality and, therefore, there 1s a need to emulate TCAMs using
the logic blocks available inthe FPGA. In recent years, a number of schemes to emulate TCAMs on
processors have been proposed. Some of them take advantage of the large number of memory blocks
available mside modern processors to use them to implement TCAMs. A problem when using memories 1s
that they can be affected by soft errors that corrupt the stored bits. The memories can be protected with a
parity check to detect errors or with an error correction code to correct them, but this requires additional
memory bits per word. In this brief, the protection of the memories used to emulate TCAMs 1s considered.
KEYWORDS: Multiple Cell Upsets, Content addressable Memory, Ternary, Soft errors, Erroro checking,
Parity.

INTRODUCTION: Multiple Cell Upsets
(MCUs) are like a single event that induces

example, in [2], it was estimated that for a 65-nm
static random access memory (SRAM) memory,
several bits in an integrated circuit to fail at the the bit error rate was on the order of 10—9 errors
same time. It affects mostly Static Random

Access Memory (SRAM). The MCUs occur due

pe year. That would translate to only one error
per year for a system that uses 1 Gbit of

to radiation particle striking the memory and the
neutrons penetrate into the SRAM memory. Due
to this, electron hole pair generation will take
place resulting in an accumulation of the charges
i the memory. When the charges exceed the
critical charge limit, then it can flip the logical
state in the memory [1]. It is stated that neutron
irradiation reduced the single event latch-up and
the sensitivity of CMOS SRAM [2] Soft errors
are a major concern for modern electronic
circuits and,in particular, for memories [1]. A solt
error can change the contents of the bits stored in
a memory and cause a system failure. The soft
error rate in terrestrial applications 1s low. For

memory. However, even such a low error rate 1s a
big concern for critical applications such as
communication networks on which the network
elements such as routers have to provide a high
level of rehability and availability. Therefore, soft
errors are an important issue when designing
routers or other network elements, and
manufacturers take them into account and
Incorporate error mitigation techniques [3], [4].
For example, error detection and correction
codes are commonly used to protect memories
[5]. A parity bit can be added to each memory
word to detect single-bit errors, or a single-error
correction (SEC) code can be used to correct

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo0.01, July -2020, Pages: 154-163

them. These codes require additional bits per
word thus, mcreasing the memory size and also
some logic to write and read from the memory.
For example, for a 16-bit word, an SEC code
requires 5 bits while a parity check requires only
one. Ternary content addressable memories
(TCAMs) are a special kind of content
addressable memories [6] that support do not
care bits (commonly denoted as “x”) that match
both a zero and a one. TCAMs are widely used 1n
networking applications to perform packet
classification [7]. They can be implemented as
standalone devices or integrated as part of
networking application specific integrated circuits
(ASICs) [8]. The TCAM memory cells different
from normal SRAM cells, in which they check
the mcoming value for a match to the stored
value that can be for each bit 0, 1, or x. The
results from all the words are then sent to a
priority encoder that returns the match with the
highest priority. This comparison and selection
logic introduces a significant overhead in terms of
area and powerconsumption relative to that of an
SRAM memory.

LITERATURE SURVEY: In [9], a technique
was proposed to reduce power consumption of
matchlines 1n content addressable memories
(CAMs) called selective precharge technique. In
selective precharge technique, the matchline is
divided mto two segments. Firstly, the searching
operation is performed in the first segment in
which first few bits of a word 1.e. a small subset of
CAM cells are searched. If there 1s a matching of
data i the first segment only then searching of
remaining bits i the second segment will be
activated. In [8], an architecture was proposed
having low-power, low-cost, and high-reliability
features called as fully parallel precomputation-
based content addressable memory (PBCAM).
This design is based on a precomputation skill
that saves power consumption of the CAM by
reducing number of comparisons in the second
part of the comparison process. In this design,
one’s count approach 15 used for

precomputation. Hence, a one"s count
parameter extractor was designed using a chain of
full adders but it increases delay as data bit length
increases. In [7], a technique was proposed to
reduce power consumption of matchlines in
content addressable memories (CAMs) called
pipelining technique. In this technique, the
search operation 1s pipelined by breaking the
match-lines into many segments. Since most
stored words do not match in their first segments,
the search operation i1s aborted for subsequent
segments. Hence, power gets reduced. The
power savings of the pipelined MLs 1s a result of
activating only a small portion of the matchline
segments. In [5], a new approach for PBCAM
known as a Block-XOR approach was proposed
to 1mprove the efficiency of low power
(PBCAM)
proposed in [8]. In this paper, a Block-XOR

precomputation-based CAM

parameter extractor for low power PB-CAM was
proposed. This paper presented theoretical and
practical proofs to venfy that this proposed
Block-XOR PB-CAM can effectively achieve
greater power reduction by reducing the number
of comparison operations in the second part of
the comparison process. This implies that this
approach 1s more flexible and adaptive for
general designs. In addition, the proposed Block-
XOR PB-CAM can compute parameter bits in
parallel with only three XOR gate delays for any
input bit length (constant delay of search
operation). Matrix Code (MC) [15] combined
hamming and parity code to protect SRAM
memory. It performed better than Hamming.
CONTENT-ADDRESSABLE. MEMORY:
Content-addressable memory (CAM) is silicon
chip architecture that 1s purpose-built for
extremely fast but very specific type of memory
lookups. Lookups using a CAM 1is conceptually
similar to associative array logic in data structures
but the output are highly simplified. When key
1s passed to a CAM sub-system it returns the
assoclated value to that key. As a result a “key ->

value” pair 1s created that can be referenced

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

further as an object. The most important feature
1s that a lookup of an entry in a CAM can be
performed in a single clock cycle in the silicon.
Compare this with a RAM module that requires
multiple clock cycles to make a single memory
fetch.

matchline

stored word #0 —

stored word #1 —
s s $!]
§ —» address
| BIL

stored word #m —

I [] I]]o— searchline
search data
n bits

Figure 1: Conceptual View Diagram of CAM
The conceptual view diagram of CAM 1is shown
m Figurel. It shows that CAM contains m data
words in which data 1s stored. The search word 1s
the n bit input data which 1s broadcasted onto the
search lines to compare it with the table of stored
words simultaneously [6]. There is a matchline
associated with each stored word which indicates
whether the search data is matched with the
stored data or not. If the search data is matched
with stored data, it 1s a match case otherwise
mismatch case. These matchlines are fed to an
encoder. This encoder generates the binary
location corresponding to matchline which
indicates the match case. If there are more than
one matchline that indicates the match case then
the priority encoder can be used to generate the
matched memory location. The priority encoder
gives the matching address location
corresponding to highest priority matchline.

ERROR DETECTION AND CORRECTION
IN SRAM-BASED TCAMS The scheme

proposed to protect the memories used to

emulate the TCAM uses a per word parity bit to
detect single-bit errors. Then, once an error is
detected, the mtrinsic redundancy of the memory
contents 1s used to try to correct the error. The
mmplementation of the parity protection is shown
m Fig. 2 where p corresponds to the parity bit. It
can be seen that in addition to the match signal,
an error signal is generated when there 1s a
mismatch between the

3l

Nhnih

ry: 000xxx
r: 00x011
r 1100
1 not used

error

matchr,

matchr;

matchr,

matchr,

e=

Fig. 2. Examples of single-bit errors on a parity
protected TCAM with 6-bit keys and four rules
emulated using two SRAMs. stored parity and he
recomputed one. This 1s a standard parity
protection that can detect all single-bit errors [5].
Detecting the error on every access is crucial to
avold incorrect results on search operations. Let
us now assume that a single-bit error has
occurred on a given word and that it is detected
with the parity check. Upon error detection, we
can check the contents of the memory to try to
correct the error. A first attempt could be to read

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo0.01, July -2020, Pages: 154-163

all the words in the memory and count the
number of positions that have a one for each
rule. Let us denote that number as the weight of
the rule in that memory. For example, in the
leftmost memory of Fig. 2, rl would have a
weight of 1, 12 of 2, and 13 of 4. This can help us
identify the erroneous bit as the weight for an
error-free rule can only be 0, 1, 2, 4, and 8 for an
8-position memory. To further discuss the error
correction process,let us focus on the examples
of single-bit errors shown in Fig. 3. For example,
€3 affects 13 on the leftmost memory by changing
its weight from 4 to 3. Since 3 1s not a valid value,
after detecting the parity error, we would identify
that the erroneous bit 1s that in /3 and we would
correct it. This approach would be effective for
rules that have a weight larger than two, 1Le., they
have two or more “x” bits on the key bits that
correspond to that memory. On the other hand,
for rules with a lower weight, checking the weight
alone may not be enough. Let us now consider a
rule with weight two. Then, an error that changes
a zero to a one will change the weight to three
and the error will be corrected. However, when a
one 1s changed to a zero (as in €2), then the new
weight would be one that 1s a valid value and the
error cannot be corrected. This, however, 1s less
likely to occur as only 2 positions have a one. If
we now consider a weight one rule, an error that
sets another bit to one would produce a weight of
two that is also valid. However, not all weight two
combinations are possible. This is clearly seen
when looking at e4. In that case, the values of 12
that are one would correspond to key values 000
and 011 and those do not correspond to a valid
rule. In general, only positions that correspond to
key values that are at distance one [rom the
original value will not be detected. On the other
hand, an error that sets to zero the position that
was one in a weight one rule can be corrected by
checking 1f the rule has zero weight on the other
memories. If that 1s the case, then the rule 1s
disabled and the bit 1s not in error. Otherwise,
the rule had a weight of one and the error is

corrected. Finally, an error in a rule that had a
weight of zero can also be corrected by checking
the weight of the rule on the other memories.
The previous discussion shows that by using the
mtrinsic redundancy of the memory contents,
many single-bit error patterns could be corrected.
Let us now quantify the fraction of single-bit error
patterns that can be corrected for each weight in a
memory of 2bH positions. 1) Weight zero: all
patterns can be corrected. 2) Weight one: all
except those that set a bit to one for a position
with an address at distance one, this corresponds
to 1 — H2b. 3) Weight two: all patterns can be
corrected except the two tha tset a position with a
one to a zero, this corresponds to 1-2/25 .4)
Weight four or larger: all patterns can be
corrected. It can be seen that most of the error
patterns are corrected. This 1s better seen 1n
Table 1 that illustrates the percentage of
correctable patterns for columns of different
weights. The only cases where not all errors can
be corrected are weight one and two, and for
those the percentage will approach 1009 when b
1s large. The percentage of errors that can be
corrected for different values of b i1s shown in
Table II. It can be seen that even for small
memories (b = 5 corresponds to 32 positions),
the error coverage is close to 90% in the worst
case. For larger memories, the coverage is over
959% and gets close to 1009%. For example, for b=
9, the coverage 1s over 98% in the worst case.
This shows the effectiveness of the proposed
scheme 1n correcting single bit errors when the
memories are protected with a parity bit. The
pseudocode of the proposed correction algorithm
1s shown in Algorithm 1. The process starts
when a parity error 1s detected when reading a
word from a block memory. To correct the error,
we need to identify the bit (or column) affected
by the error. To do so, in the first phase, all the
positions in the block are read and the column
weights are computed by adding the ones seen in
each column. Then, the second phase checks
different cases for the column weight to try to

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

identify the erroneous column. If that occurs, the
bitof that column in the word that had the parity
error 1s the erroneous bit and it 1s corrected. In
the algorithm, this second phase starts by
checking if there 1s a column that has an illegal
weight. As discussed before, the only valid
column weights are: 0, 1, 27/ for 7 =1, 2,..., b
Therefore, if a column has, for example, weight
three, then it is the erroneous one. If the
erroneous bit 1s found, 1t 1s corrected and the
process ends. Otherwise, we proceed to check
columns that have zero weight. Those should
correspond to TCAM entries that are not used
and should have zero weight on all the other
memory blocks. Therefore, we check if they have
also zero weight on another block. If not, the
error has been found and it 1s corrected. If all the
columns with zero weight have also weight zero
on another block, we proceed

nhhhphpbk

Nnhhppp

'VVVIVV

K ﬂz k address i 000w
: — r 0001
S kZ

8 g N i 1100
ks & ry:not used

match 1y

|
—p

matchr,

tehry
l ma

Fig. 3 SEC protected TCAM with 6-bit keys and
four rules emulated using two SRAMs.

Algorithm 1 Proposed Algorithm for Error Correction

Require: Parity error detected in a memory word
1: Read memory and compute column weights
2. if there is a column with illegal weight then
3 Correct that bit on the erroneous word
4 return error corrected
5 end if
6. if there are columns with zero weight then
T Read another memory
8 Compute the weights of those columns

9

10 Correct that bit on the erroneous word
11 return error corrected

12 end il

13: end if

14: if there are columns with weight one then

15 Read another memory

16: Compute the weights of those columns
17: if any has zero weight on the other memory then

18: Correct that bit on the erroneous word
19: return error corrected

20 end if

21: end if

22: if there are columns with weight two then
23 Read the memory

24: Check the patterns of those columns

25 il any has an illegal patiern then

26 Correct that bit on the erroneous word
27: return error corrected

28: end if

29 end if

30: return uncorrected error

if any has a non zero weight on the other memory then

to check columns of weight one. For that, we
check if they have zero weight on another block.
If that 1s the case, that column 1s the one that
suffered the error and we correct it. If not, we
proceed to the last step in which columns of
weight two are checked. To do that, the two
addresses of the two positions that contain a one
are XORed. If the result has more than a one,
the column has suffered an error and we correct
it. If that does not happen, then we have suffered
one of the few errors that are not correctable.

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo0.01, July -2020, Pages: 154-163

DRAWBACKS:

Major drawback lies in hardware implementation.
Because of more density requirement for error
detection and correction , need more hard ware
components for designing.

Some more complexity is presented in software
implementation.

PROPOSED TECHNIQUE:
- _|_"\'_

Fig: 4 bit majority

In Boolean logic, the majority function (also
called the median operator) 1S
a function from n inputs to one output. The value
of the operation 1s false when 172 or more
arguments are false, and true otherwise.
Alternatively, representing true values as 1 and
Majority Circuit
Implementation: Here we present a compact

false values as 0.

mmplementation for the majority gate using
Sorting Networks [13]. The majority gate has
application in many other error-correcting codes,
and this compact implementation can improve
many other applications. Majority function of
binary digits 1s simply the median of the digits.
A majority gate 1s a logical gate used 1n circuit
complexity and other applications of Boolean
circuits. A majority gate returns true if and only if

more than 50% of its inputs are true.

For instance, in a full adder, the carry output 1s
found by applying a majority function to the three
mputs, although frequently this part of the adder
1s broken down into several simpler logical gates.
Many systems have triple modular redundancy;

they use the majority function for majority logic

decoding to implement error correction.

A major result in circuit complexity asserts that
the majority function cannot be computed
by ACO circuits of sub exponential size.

S B Ve S Wodw Lot 1
NE

Isusndies.. 0 8 s

BoolfiEl (02372 40 A2R2R a0 Ame e || Qe

Sakinllisiniy

=]

PR

Y o g g
W logic unsigned

o »08X

o T okl 0 S) Fcifistials () Sotek

CONCLUSION: To prevent MCUs from
causing data corruption, more complex error
correction codes (ECCs) are widely used to
protect memory, but the main problem 1s that
they would require higher delay overhead.
Recently, matrix codes (MCs) based on
Hamming codes have been proposed for
memory protection. In this implemented project,
novel per-word DMC was proposed to assure the
rehiability of memory. The protection code
utilized decimal algorithm to detect errors, so that
more errors were detected and corrected. The
obtained results showed that the implemented
scheme has a superior protection level against
large MCUs 1 memory. Besides, the

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

mmplemented decimal error detection technique
1s an attractive opinion to detect MCUs in CAM
because it can be combined with BICS to provide
an adequate level of immunity.

REFERENCES:

[1] Dejan Georglev, “Low Power Concept for
Content Addressable Memory (CAM) Chip
Design,” International Journal of Advanced
Research 1n Electrical, Electronics and
Instrumentation Engineering, Vol.2, Issue 7, July
2013.

[2] S. Jeeva, S. Bharathi and Dr. C. N.
Marimuthu, “Low Power Architecture of Banked
Pre-Computation Based Content Addressable
Conference on

Memory”, International

Computing, Communication and Information
Technology (ICCCIT 2012), p.p. 156-160, June
2012.

[3] Rafeekha M. J, V. Lakshmi Narasimhan,
“Banked Approach of Low Power Design of Pre-
Computation Based Content Addressable
Memory”, International Journal of Modern
Engineering Research (IJMER), Vol. 2, Issue 3,
p-p- 1424-1429, May-June 2012.

[4] Subha. M, “The Efficient Architecture
Methods for Low Power Content Addressable
Memory- Survey”, Recent Advances in
Networking, VLSI and Signal Processing, p.p.
141-146.

[5] S.J. Ruan, C.Y. Wu, J. Y. Hsieh, “Low power
design of pre-computation based content-
addressable memory,” IEEE Transactions Very
Large Scale Integration (VLSI) Systems, Vol. 16,
No. 3, p.p. 331-335, March 2008.

[6] K. Pagiamtzis and A. Sheikholeslami,
"ContentAddressable Memory (CAM) Circuits
and Architectures: A Tutoral and Survey," IEEE
Journal of Solid-State Circuits, Vol. 41, p.p. 712-
727, March 2006.

[7] K. Pagiamtzis and A. Sheikholeslami, “A low-
power content-addressable memory (CAM) using
pipelined hierarchical search scheme,” IEEE]J.

Solid-State Circuits, Vol. 39, No. 9, p.p. 1512-
1519, Sep. 2004.

[8] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-
power precomputation-based fully parallel
content-addressable memory,” IEEE]J. Solid-
State Circuits, Vol. 38, No. 4, p.p. 654-662, Apr.
2003.

[9] C. A. Zukowski and S.-Y. Wang, “Use of
selective precharge for low power content-
addressable memories,” n Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Vol. 3, p.p. 1788-
1791, 1997.

Copyright @ 2020 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.01, July -2020, Pages: 154-163

